Cos^2b-sin^2a/sina.cosa+sinb.cosb=cot(a+b)
Answers
Answered by
2
To find :
To prove ( cos^2b - sin^2a ) / ( sina.cosa + sinb.cosb ) = cot (a+b)
Solution :
L.H.S. :
( cos^2b - sin^2a ) / ( sina.cosa + sinb.cosb )
=> 2 ( cos^2b - sin^2a ) / 2 ( sina.cosa + sinb.cosb )
=> ( 2 cos^2b - 2 sin^2a ) / ( sin 2a + sin 2b )
=> ( 2 cos^2b - 2 sin^2a + 1 - 1 ) / 2 sin (a+b) cos (a-b)
=> ( 2 cos^2b -1 + 1 - 2 sin^2a ) / 2 sin (a+b) cos (a-b)
=> ( cos 2b + cos 2a ) / 2 sin (a+b) cos (a-b)
=> ( 2 cos (a+b) cos (a-b) ) / 2 sin (a+b) cos (a-b)
=> cos (a+b) / sin (a+b) = cot (a+b) = R.H.S.
Hence proved , ( cos^2b - sin^2a ) / ( sina.cosa + sinb.cosb ) = cot (a+b)
Similar questions
Hindi,
5 months ago
English,
5 months ago
Math,
5 months ago
English,
10 months ago
English,
10 months ago
Computer Science,
1 year ago
Political Science,
1 year ago