Math, asked by sssk2, 1 year ago

cos^2theta + cos^2(alpha+theta)-2cosalpha×cos theta ×cos(alpha+theta) independent of theta

Answers

Answered by MaheswariS
31

Answer:

cos^2\theta+cos^2(\alpha+\theta)-2\:cos\alpha\:cos\theta\:cos(\alpha+\theta) is independent of \theta

Step-by-step explanation:

The given expression is simplified by using the following formulae

Formula used;

1.\:cos(A+B)+cos(A-B)=2\;cosA\:cosB

2.\:cos(A+B).cos(A-B)=cos^2A-sin^2B

Given:

cos^2\theta+cos^2(\alpha+\theta)-2\:cos\alpha\:cos\theta\:cos(\alpha+\theta)

=cos^2\theta+cos^2(\alpha+\theta)-[2\:cos\theta\:cos\alpha]\:cos(\theta+\alpha)

=cos^2\theta+cos^2(\alpha+\theta)-[cos(\theta+\alpha)+cos(\theta-\alpha)]\:cos(\theta+\alpha)

(using formula (1))

=cos^2\theta+cos^2(\alpha+\theta)-[cos^2(\theta+\alpha)+cos(\theta+\alpha)\:cos(\theta-\alpha)]

=cos^2\theta+cos^2(\alpha+\theta)--cos^2(\theta+\alpha)-cos(\theta+\alpha)\:cos(\theta-\alpha)

=cos^2\theta-cos(\theta+\alpha)\:cos(\theta-\alpha)

=cos^2\theta-(cos^2\theta-sin^2\alpha)      (using formula (2))

=cos^2\theta-cos^2\theta+sin^2\alpha

=sin^2\alpha

It is independent of \theta

Answered by Anonymous
26

Given :

 { \cos }^{2}  \theta +  { \cos}^{2} ( \alpha  +  \theta) - 2 \cos( \alpha )\cos( \theta)  \cos( \alpha  +  \theta)

Independent of  \theta

Solution :

 { \cos }^{2}  \theta +  { \cos}^{2} ( \alpha  +  \theta) - 2 \cos \alpha  \cos \theta \cos( \alpha  +  \theta)

 { \cos}^{2}  \theta +  { \cos }^{2} ( \alpha  +  \theta) - [<strong>2 \cos( \alpha )  \cos( \theta)</strong>  ]\cos( \alpha  +  \theta)

 { \cos }^{2}  \theta +  { \cos}^{2} ( \alpha  +  \theta) -  { \cos}^{2} ( \theta +  \alpha ) +  \cos (\theta -  \alpha )\cos( \theta +  \alpha )

 { \cos}^{2}  \theta - [\cos( \theta +  \alpha )  \cos( \theta +  \alpha ) ]

 { \cos }^{2}  \theta -  { \cos}^{2}  \theta +  { \sin}^{2}  \alpha

 { \sin }^{2}  \alpha

Which is Independent of \theta

Identities Used :-

 \boxed{\cos( \alpha  +  \theta)  +  \cos( \theta  -  \alpha )  = 2 \cos( \alpha )  \cos( \theta)}

\boxed{ \cos( \theta -  \alpha ) . \cos( \theta +  \alpha )  =  { \cos }^{2}  \theta +  { \sin}^{2}  \alpha}

Similar questions