Math, asked by dishavyas010, 2 months ago

cos^2x/1- tan x + sin^3/sin x - cos x = 1+ sin x cos x​

Answers

Answered by mathdude500
3

\large\underline{\bold{Given \:Question - }}

Prove that

\rm :\longmapsto\:\dfrac{ {cos}^{2} x}{1 - tanx}  + \dfrac{ {sin}^{3} x}{sinx - cosx}  = 1 + sinxcosx

Identities Used :-

 \red{ \boxed{ \sf{tanx \: =  \:  \frac{sinx}{cosx}  }}}

 \red{ \boxed{ \sf{  {sin}^{2}x +  {cos}^{2}x \:  =  \: 1}}}

 \red{ \boxed{ \sf{ {x}^{3} -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2}) }}}

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{ {cos}^{2} x}{1 - tanx}  + \dfrac{ {sin}^{3} x}{sinx - cosx}

 \rm \:  \:  =  \: \:\dfrac{ {cos}^{2} x}{1 - tanx}  + \dfrac{ {sin}^{3} x}{sinx - cosx}

 \rm \:  \:  =  \: \:\dfrac{ {cos}^{2} x}{1 -  \dfrac{sinx}{cosx} }  + \dfrac{ {sin}^{3} x}{sinx - cosx}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \boxed{ \sf{ \because \:  \: tanx =  \frac{sinx}{cosx} }}}

 \rm \:  \:  =  \: \:\dfrac{ {cos}^{2} x}{ \:  \:  \:  \dfrac{cosx - sinx }{cosx}  \:  \:  \: }  + \dfrac{ {sin}^{3} x}{sinx - cosx}

 \rm \:  \:  =  \: \:\dfrac{ {cos}^{3} x}{ \:  \:  \:  cosx - sinx \:  \:  \: }  + \dfrac{ {sin}^{3} x}{sinx - cosx}

 \rm \:  \:  =  \: \:\dfrac{ {cos}^{3} x}{ \:  \:  \:  cosx - sinx \:  \:  \: }   -  \: \dfrac{ {sin}^{3} x}{cosx - sinx}

 \rm \:  \:  =  \: \:\dfrac{ {cos}^{3} x -  {sin}^{3} x}{ \:  \:  \:  cosx - sinx \:  \:  \: }

\:  \:  \:  \:  \:  \:  \: \red{ \boxed{ \sf{ \because \:   {x}^{3} -  {y}^{3} = (x - y)( {x}^{2} + xy +  {y}^{2})}}}

 \rm \:  \:  =  \: \:\dfrac{ \cancel{ (cosx - sinx)} \:  \: ({cos}^{2} x  + cosx \: sinx + {sin}^{2}x)}{ \:  \:  \: \cancel{  cosx - sinx \:}  \:  \: }

 \rm \:  \:  =  \:  {sin}^{2}x +  {cos}^{2}x + sinx \: cosx

\:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \red{ \boxed{ \sf{ \because \:  {sin}^{2}x +  {cos}^{2}x = 1  }}}

 \rm \:  \:  =  \: 1 + sinx \: cosx

Hence, Proved

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions