Math, asked by prathajain59, 7 months ago

cos^2x - 3cosx + 2 /sin x =1

Answers

Answered by Anonymous
268

Step-by-step explanation:

Step-by-step explanation:

\huge\mathfrak\green{\bold{\underline{☘{ ℘ɧεŋσɱεŋศɭ}☘}}}

\red{\bold{\underline{\underline{❥Question᎓}}}} Integrate the function

 \huge\tt\frac{ \sqrt{tanx} }{sinxcosx}

\huge\tt\underline\blue{「Answer」</p><p> }

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

 ⇛\huge\tt\frac{ \sqrt{tanx} }{sinxcosx}

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt \frac{ \sqrt{tanx} }{sinxcosx \times  \frac{cosx}{cosx} }

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt \frac{ \sqrt{tanx} }{sinx \times  \frac{ {cos}^{2} x}{cosx} }

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛ \huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2} x \times  \frac{sinx}{cosx} }

ㅤ ㅤ ㅤ ㅤ ㅤ

 ⇛\huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2}x \times tanx }

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt {tan}^{ \frac{1}{2} - 1 }  \times  \frac{1}{ {cos}^{2} x}

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt {(tan)}^{  - \frac{ 1}{2} }  \times  \frac{1}{ {cos}^{2}x }  = {(tanx)}^{  - \frac{1}{2} }  \times  {sec}^{2} x

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt {(tan)}^{  - \frac{ 1}{2} }  \times  \frac{1}{ {cos}^{2}x }  = ∫ {(tanx)}^{  - \frac{1}{2} }  \times  {sec}^{2} x \times dx

ㅤ ㅤ ㅤ ㅤ ㅤ

☛Let tanx=t

☛differentiating both sides w.r.t.x

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt {sec}^{2} x =  \frac{dt}{dx}

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt{dx  \frac{dt}{ {sec}^{2}x } }

ㅤ ㅤ ㅤ ㅤ ㅤ

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt∴∫  {(tanx)}^{  - \frac{1}{2} }  \times  {sec}^{2} x \times dx

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge\tt  ∫  {(t)}^{ -  \frac{1}{2} }  \times  {sec}^{2} x \times  \frac{dt}{ {sec}^{2}x }

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛ \huge\tt ∫  {t}^{ -  \frac{1}{2} }  \times dt

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛ \huge\tt\frac{ {t}^{ -  \frac{1}{2}  + 1} }{  - \frac{1}{2} + 1 }  + c

ㅤ ㅤ ㅤ ㅤ ㅤ

 ⇛ \huge\tt \frac{ {t}^{ \frac{1}{2} } }{ \frac{1}{2} }  + c = 2 {t}^{ \frac{1}{2} }  + c = 2 \sqrt{t}  + c

ㅤ ㅤ ㅤ ㅤ ㅤ

⇛\huge2 \sqrt{t}  + c = 2 \sqrt{tanx}  + c

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions