Cos^2x + cos^2( x + 120) + cos^2( x - 120)
Answers
To Find :-
- value of cos²x + cos²(x + 120) + cos²(x - 120) = ?
Formula used :-
→ Cos2A = 2Cos²A - 1
→ Cos2A + 1 = 2Cos²A
→ (1 + Cos2A)/2 = Cos²A
→ Cos²A = (1 + Cos2A)/2
Solution :-
with Above Formula we can written :-
→ cos²(x + 120) = {1 + cos2(x + 120)/2 } = {1 + cos(2x + 240)/2}
→ cos²(x - 120) = {1 + cos2(x - 120) /2 } = {1 + cos(2x - 240)/2}
Adding These Two values we get :-
→ {1 + cos(2x + 240)/2} + {1 + cos(2x - 240)/2}
→ [{ 1 + cos(2x + 240) } + {1 + cos(2x - 240) } ] / 2
→ [ 2 + cos(2x + 240) + cos(2x - 240) ] /2
→ 1 + [ cos(2x + 240) + cos(2x - 240) ] /2
Using cosA + cosB = 2 * cos(A + B/2) * cos(A - B/2)
→ 1 + [2 * cos{(2x + 240 + 2x - 240)/2} * cos{(2x + 240 - 2x + 240)/2} ] /2
→ 1 + [2 * cos(4x/2) * cos(480/2) ] /2
→ 1 + [ 2 * cos2x * cos240 ] /2
→ 1 + (cos2x * cos240° ]
_____________________
Now , Putting This value in Our Question we get,
→ cos²x + 1 + (cos2x * cos240°)
Now,
→ cos240° = cos(180° + 60°) = -(cos60° = -(1/2) .
→ cos²x + 1 + cos2x * (-1/2)
Putting cos²x = (1 + cos2x)/2 we get,
→ 1 + {(1 + cos2x)/2} - (cos2x/2)
→[2 + 1 + cos2x - cos2x ] /2