Cos*3(2a) +3cos2a=4 (cos*6a- sin*6a)
Answers
Answered by
4
Given: Cos*3(2a) +3cos2a=4 (cos*6a- sin*6a)
To find: The value of the above expression?
Solution:
- Consider RHS, we have 4 (cos*6a- sin*6a)
- Now we have the formula for power reduction, which is:
cos^6 a = (1+cos2a / 2 )³
= 1/8 x ( 1 + 3 cos2a + 3 cos²2a + cos³2a)
- Similarly,
sin^6 a = (1-cos2a / 2 )³
= 1/8 x ( 1 - 3 cos2a + 3 cos²2a - cos³2a)
- Adding both the terms, we get:
cos*6a- sin*6a = 1/8 ( 1 + 3 cos2a + 3 cos²2a + cos³2a + 1 - 3 cos2a + 3 cos²2a - cos³2a )
- Mul;tiplying by 4, we get RHS:
4 (cos*6a- sin*6a) = 1/2 ( 6 cos2a + 2 cos³2a)
4 (cos*6a- sin*6a) = 3 cos2a + cos³2a
= LHS
Answer:
So from above solution we proved that Cos*3(2a) +3cos2a=4 (cos*6a- sin*6a)
Similar questions