English, asked by hk6638726, 6 months ago

cos( 3 pi/4+x )-cos( 3 pi/4-x)=-​

Answers

Answered by Mysterioushine
4

Question :

 \sf \:  \cos \bigg(  \dfrac{3 \pi}{4} + x\bigg)  -  \cos \bigg( \dfrac{3 \pi}{4} - x \bigg)  =

Solution :

First let us calculate the value of \sf{\cos\big(\frac{3\pi}{4}-x\big)}. By aplying the formulae Cos(A-B) = CosACosB + SinASinB . We get ;

 \\   : \implies \sf \:  \cos \bigg( \frac{3 \pi}{4} - x  \bigg)  =  \cos \bigg( \frac{3 \pi}{4}  \bigg) . \cos(x)  +  \sin  \bigg( \frac{3 \pi}{4}  \bigg) . \sin(x)  \\  \\

 \\    :  \implies \sf \: \cos \bigg( \frac{3 \pi}{4} - x \bigg)  =  \cos \bigg( \frac{3 \times 180}{4}  \bigg). \cos(x)   +  \sin \bigg( \frac{3 \times 180}{4}  \bigg). \sin(x)

 \\   : \implies \sf \:  \cos \bigg( \frac{3 \pi}{4} - x  \bigg)  =    \cos(135). \cos(x)   +  \sin(135) . \sin(x)  \\  \\

 \\   : \implies \sf \:  \cos \bigg( \frac{3 \pi}{4} - x  \bigg)  =    - \frac{1}{ \sqrt{2} } . \cos(x)  +  \frac{1}{ \sqrt{2} } .  \sin(x)  \\  \\

 \\   : \implies \sf \:  \cos \bigg( \frac{3 \pi}{4} - x  \bigg)  =   \frac{ \sin(x)  -  \cos(x) }{ \sqrt{2} }   \: .........(1)

Now , Applying the formula i.e , Cos(A+B) = CosACosB - SinASinB. We get ;

 \\   : \implies \sf \:  \cos \bigg( \frac{3 \pi}{4}  \bigg) . \cos(x)  -  \sin \bigg( \frac{3 \pi}{4}  \bigg). \sin(x)   -  \cos \bigg( \frac{3 \pi}{4}  - x\bigg)  \\  \\

 \\   : \implies \sf \:  \bigg [ \cos \bigg( \frac{3 \times 180}{4}  \bigg) . \cos(x)  -  \sin \bigg( \frac{3 \pi}{4}  \bigg). \sin(x)  \bigg]  -  \cos \bigg( \frac{3 \pi}{4}  - x \bigg)  \\  \\

 \\   : \implies \sf \bigg[  \cos(135). \cos(x)  -  \sin(135). \sin(x)    \bigg]  -  \cos \bigg( \frac{3 \pi}{4} - x \bigg)  \\  \\

 \\   : \implies \sf \bigg[  -  \frac{1}{ \sqrt{2} }  . \cos(x)  -  \frac{1}{ \sqrt{2} }. \sin(x)  \bigg] -  \cos \bigg( \frac{3 \pi}{4} - x  \bigg)  \\  \\

 \\   : \implies \sf \:  \bigg[  -  \frac{  \cos(x) }{ \sqrt{2}  }  -  \frac{ \sin(x) }{ \sqrt{2} }  \bigg] -  \cos \bigg( \frac{3 \pi}{4} - x  \bigg)  \\  \\

 \\   : \implies \sf \bigg[   \frac{ -  \cos(x) -  \sin(x)  }{ \sqrt{2} } \bigg]  -  \cos \bigg( \frac{3 \pi}{4}  - x \bigg)

From eq(1) ,

 \\   : \implies \sf \bigg[  \:  \frac{  -  \cos(x) -  \sin(x)   }{ \sqrt{2} }   \bigg] -  \bigg[  \frac{ \sin(x)  -  \cos(x) }{ \sqrt{2} } \bigg ] \\  \\

 \\  :  \implies \sf \bigg[  \frac{ -  \cos(x) -  \sin(x)   -[  \sin(x)  -  \cos(x) ] }{ \sqrt{2} } \bigg ] \\  \\

 \\   : \implies \sf \:  \bigg[   \frac{ -  \cos(x) -  \sin(x)  -  \sin(x)   +  \cos(x) }{ \sqrt{2} } \bigg] \\  \\

 \\  :  \implies \sf \bigg[  \frac{ - 2 \sin(x) }{ \sqrt{2} }  \bigg] \\  \\

Rationalizing the denominator ,

 \\   : \implies \sf \:  \frac{ - 2 \sqrt{2} \sin(x)  }{ \sqrt{2}  \times  \sqrt{2} }  \\  \\

 \\    :  \implies \sf \:  -  \sqrt{2}  \sin(x)

Note :

  \\ \longmapsto \sf\cos(135)  =  -    \frac{1}{ \sqrt{2} }  \\  \\

 \\ \longmapsto \sf \:  \sin(135)  =  \frac{1}{ \sqrt{2} }

Answered by Anonymous
1

cos( 3 pi/4+x )-cos( 3 pi/4-x)= -√2 sinx.

Similar questions