cos 3 theta + 8 cos ^3 =0
Answers
Answer:
♦ Principal solution :
∅ = π/3 , π/2 , 2π/3 , 4π/3 , 3π/2 , 5π/3
♦ General solution :
∅ = 2nπ ± π/2 or 2mπ ± π/3 or 2qπ ± 2π/3
m , n , q € Z
Note:
★ If sin∅ = sinα , then ;
∅ = nπ + (-1)ⁿα , n € Z
★ If cos∅ = cosα , then ;
∅ = 2nπ ± α , n € Z
★ If tan∅ = tanα , then ;
∅ = nπ + α , n € Z
★ sin3∅ = 3sin∅ - 4sin³∅
★ cos3∅ = 4cos³∅ - 3cos∅
Solution:
- Given : cos3∅ + 8cos³∅ = 0
- To find : ∅ = ?
We have ;
=> cos3∅ + 8cos³∅ = 0
=> 4cos³∅ - 3cos∅ + 8cos³∅ = 0
=> 12cos³∅ - 3cos∅ = 0
=> 3cos∅•(4cos²∅ - 1) = 0
=> cos∅•(4cos²∅ - 1) = 0
=> cos∅•(2cos∅ - 1)•(2cos∅ + 1) = 0
Here,
Three cases arises :-
1) cos∅ = 0
OR
2) 2cos∅ - 1 = 0
OR
3) 2cos∅ + 1 = 0
★ Case(1) : cos∅ = 0
• Principal solution :-
=> cos∅ = 0
=> cos∅ = cosπ/2 or cos(2π - π/2)
=> ∅ = π/2 or 3π/2
• General solution :-
=> cos∅ = 0
=> cos∅ = cosπ/2
=> ∅ = 2nπ ± π/2 , n € Z
★ Case(2) : 2cos∅ - 1 = 0
• Principal solution :-
=> 2cos∅ - 1 = 0
=> 2cos∅ = 1
=> cos∅ = 1/2
=> cos∅ = cosπ/3 or cos(2π - π/3)
=> cos∅ = cosπ/3 or cos5π/3
=> ∅ = π/3 or 5π/3
• General solution :-
=> 2cos∅ - 1 = 0
=> 2cos∅ = 1
=> cos∅ = 1/2
=> cos∅ = cosπ/3
=> ∅ = 2mπ ± π/3 , m € Z
★ Case(3) : 2cos∅ + 1 = 0
• Principal solution :-
=> 2cos∅ + 1 = 0
=> 2cos∅ = -1
=> cos∅ = -1/2
=> cos∅ = cos(π - π/3) or cos(π + π/3)
=> cos∅ = cos2π/3 or cos4π/3
=> ∅ = 2π/3 or 4π/3
• General solution :-
=> 2cos∅ + 1 = 0
=> 2cos∅ = -1
=> cos∅ = -1/2
=> cos∅ = cos(π - π/3)
=> cos∅ = cos2π/3
=> ∅ = 2qπ ± 2π/3 , q € Z