cos 3 theta + cos theta - 2 cos theta=0
Answers
Correct question :
Solve for ∅ in the given equation :-
cos3∅ + cos∅ – 2cos2∅ = 0
Answer:
♦ Principal solution :-
∅ = 0 , π/4 , 3π/4 , 2π
♦ General solution :-
∅ = nπ ± π/4 or 2mπ where m , n € Z
Note:
★ sin(A + B) = sinA•cosB + cosA•sinB
★ sin(A – B) = sinA•cosB – cosA•sinB
★ cos(A + B) = cosA•cosB – sinA•sinB
★ cos(A – B) = cosA•cosB + sinA•sinB
★ sin(A + B) + sin(A – B) = 2sinA•cosB
★ sin(A + B) – sin(A – B) = 2cosA•sinB
★ cos(A + B) + cos(A – B) = 2cosA•cosB
★ cos(A + B) – cos(A – B) = - 2sinA•sinB
★
★
★
★
★ If sin∅ = sinα , then ;
∅ = nπ + (-1)ⁿα , n € Z
★ If cos∅ = cosα , then ;
∅ = 2nπ ± α , n € Z
★ If tan∅ = tanα , then ;
∅ = nπ + α , n € Z
Solution:
- Given: cos3∅ + cos∅ – 2cos2∅ = 0
- To find : ∅ = ?
We have ;
=> cos3∅ + cos∅ – 2cos2∅ = 0
=> [ cos3∅ + cos∅ ] – 2cos2∅ = 0
=> 2cos{ (3∅ + ∅)/2 }•cos{ (3∅ - ∅)/2 }
– 2cos2∅ = 0
=> 2cos(4∅/2)•cos(2∅/2) – 2cos2∅ = 0
=> 2cos2∅•cos∅ – 2cos2∅ = 0
=> 2cos2∅•( cos∅ – 1 ) = 0
=> cos2∅•( cos∅ – 1 ) = 0
Here,
Two cases arises :-
★ Case(1) : cos2∅ = 0
• Principal solution :-
=> cos2∅ = 0
=> cos2∅ = cosπ/2 or cos(2π - π/2)
=> cos2∅ = cosπ/2 or cos3π/2
=> 2∅ = π/2 or 3π/2
=> ∅ = π/4 or 3π/4
• General solution :-
=> cos2∅ = 0
=> cos2∅ = cosπ/2
=> 2∅ = 2nπ ± π/2 , n € Z
=> ∅ = nπ ± π/4 , n € Z
★ Case(2) : cos∅ – 1 = 0
• Principal solution :-
=> cos∅ – 1 = 0
=> cos∅ = 1
=> cos∅ = cos0 or cos(2π - 0)
=> cos∅ = cos0 or cos2π
=> ∅ = 0 or 2π
• General solution :-
=> cos∅ – 1 = 0
=> cos∅ = 1
=> cos∅ = cos0
=> ∅ = 2mπ ± 0 , m € Z
=> ∅ = 2mπ , m € Z
Answer:
- cos3theta +cos theta-2cos theta =0