Math, asked by amalmakkar61831, 1 year ago

Cos 30 degree Cos 60 degree minus sin 30 degree sin 60 degree is equal to cos 90 degree

Answers

Answered by ShuchiRecites
40

To Prove

cos30° cos60° - sin30° sin60° = cos90°

Proof

What we have?

  • cos30° = sin60° = √3/2
  • cos60° = sin30° = 1/2
  • cos90° = 0

Given

R.H.S → cos90° = 0

L.H.S→ cos30° cos60° - sin30° sin60°

By substituting values we get,

→ √3/2 × 1/2 - 1/2 × √3/2

→ √3/4 - √3/4 = 0 = R.H.S

Hence Proved

Answered by Anonymous
26

To prove:

cos30cos60 - sin30sin60=cos90

Let us first find the individual values of the given trigonometric functions

 \sf{cos90 = 0} \\  \sf{sin30 = cos60 =  \frac{1}{ \sqrt{2} } } \\  \sf{cos30 = sin60 =   \frac{ \sqrt{3} }{2}  }

Now,

sin30sin60 - cos30cos60

 \sf{ =  \frac{1}{ \sqrt{2} } \times   \frac{ \sqrt{3} }{2} -   \frac{1}{ \sqrt{2} } \times  \frac{ \sqrt{3} }{2}      } \\  \\  =   \: \sf{ \frac{ \sqrt{3} }{2 \sqrt{2}  } -  \frac{ \sqrt{3} }{2 \sqrt{2} }} \\  \\  =  \sf{0}   \\  \\   \sf{ = cos90}

Hence,proved

Similar questions