cos(30°-A) +cos(30°+A) =√3 cos A
Answers
Answered by
22
Here is your answer mate
LHS
=cos (30-A)+cos(30+A)
As cos(x+y)+cos (x-y)=2cos(x+y)/2 *cos(x-y)/2
=2cos (30-A+30+A)/2 *cos(30-A-(30+A))/2
=2(cos (30-A+30+A)/2 )*cos(30-A-30-A)/2
= 2cos30*cos (-A)
=2cos 30*cosA
because cos(-x)=cos x
=2*root3/2*cos A
=root 3 cosA
Hope this helps.
LHS
=cos (30-A)+cos(30+A)
As cos(x+y)+cos (x-y)=2cos(x+y)/2 *cos(x-y)/2
=2cos (30-A+30+A)/2 *cos(30-A-(30+A))/2
=2(cos (30-A+30+A)/2 )*cos(30-A-30-A)/2
= 2cos30*cos (-A)
=2cos 30*cosA
because cos(-x)=cos x
=2*root3/2*cos A
=root 3 cosA
Hope this helps.
Answered by
0
L.H.S- cos(30°-A)+cos(30°+A)=√3 cos A
=2cos(30°-A+30°+A)/2.cos[30°-A-(30°+A)] [•°• cosC+cosD=2cosC+D/2 cosC-D/2]
=2cos60°/2 cos-2A/2
=2cos30°cos-A
=2.√3/2 cosA[•°•cos30°=√3/2, cos(-x)=cosC
=√3cosA
HENCE PROVED...
Similar questions