cos 34 degrees + cos 64 degrees- cos 4 degrees
Answers
Answer:
answer is zero if it is subtracted nd 1 if multiplied
Answer:
Prove that, \sin 34+\cos 64-\cos 4=0sin34+cos64−cos4=0
L.H.S. =\sin 34+\cos 64-\cos 4=sin34+cos64−cos4
=\sin 34+\cos (34+30)-\cos (34-30)=sin34+cos(34+30)−cos(34−30)
=\sin 34+\cos 34\cos 30-\sin 34\sin 30-(\cos 34\cos 30+\sin 34\sin 30)=sin34+cos34cos30−sin34sin30−(cos34cos30+sin34sin30)
Using trigonometric identity,
\cos (A+B)=\cos A\cos B-\sin A\sin Bcos(A+B)=cosAcosB−sinAsinB and
\cos (A-B)=\cos A\cos B+\sin A\sin Bcos(A−B)=cosAcosB+sinAsinB
=\sin 34+\cos 34\cos 30-\sin 34\sin 30-\cos 34\cos 30-\sin 34\sin 30=sin34+cos34cos30−sin34sin30−cos34cos30−sin34sin30
=\sin 34-\sin 34\sin 30-\sin 34\sin 30=sin34−sin34sin30−sin34sin30
=\sin 34-2\sin 34\sin 30=sin34−2sin34sin30
=\sin 34-2\sin 34(\dfrac{1}{2})=sin34−2sin34(21)
=\sin 34-\sin 34=sin34−sin34
= 0
= R.H.S., proved
Hence, \sin 34+\cos 64-\cos 4=0sin34+cos64−cos4=0 , proved.