Math, asked by MohitRaj2826, 1 year ago

cos 36° . cos 72° . cos 108° . cos 144° = 1/16

Answers

Answered by Inflameroftheancient
9

Hey there!

To prove : Cos(36) * Cos(72) * Cos(108) * Cos(144) = \bf{\frac{1}{16}} \\.

Let us solve it part by part and simply as a whole to prove the right hand side.

Taking Left hand side to proceed with this trigonometric values:

For "Cos(72)" :

Using the following identity of "Cos(x)" that is, Cos(x) = Sin(90 - x).

= Sin(90 - 72)

= Sin(18)

Take sin value as fractional form,

\bf{= sin(\frac{36}{2})} \\

Now, by applying the basic principles of the half angle identities that is,

\bf{Sin(\frac{x}{2}) = \sqrt{\frac{1 - Cos(x)}{2}} \\

Here,

\bf{\sqrt{\frac{1 - Cos(36)}{2}} \\

Now, Cos(36) - Sin(18) = \bf{\frac{1}{2}} \\.

And, Cos(36) + Sin(18) = \bf{\sqrt{\frac{5}{4}}} \\.

To obtain the value of Cos(36) = \bf{\frac{\sqrt{5} + 1}{4}} \\

\bf{= \sqrt{\frac{1 - \frac{\sqrt{5} + 1}{4}}{2}} \\

\bf{= \frac{\sqrt{2} \sqrt{3 - \sqrt{5}}{4}} \\

Similarly for Cos(108) = \bf{= - \frac{\sqrt{2} \sqrt{3 - \sqrt{5}}{4}} \\      

[Hint: Use the identity of Cos(x) = Sin(90 - x) to get Sin(- 18) = -Sin(18);  For Cos(108) and continue the process]

Similarly for Cos(144) = Cos(2 * 72) = Cos^2(36) - Sin^2(36)

For Cos(36) = \bf{\frac{\sqrt{5} + 1}{4}} \\

For Sin(36) = \bf{\frac{\sqrt{\frac{5 - \sqrt{5}}{2}}{2}} \\

Therefore, Cos(144) = \bf{- \frac{\sqrt{5} - 1}{4}} \\

Similarly for Cos(36) = \bf{\frac{\sqrt{5} + 1}{4}} \\

Add all the values for sin and cos trigonometric functions:

\bf{\frac{1 + \sqrt{5}}{4} (- \frac{1 + \sqrt{5}}{4})} \\ \bf{\frac{\sqrt{2} \sqrt{3 - \sqrt{5}}{4}} \bf{(- \frac{\sqrt{2} \sqrt{3 - \sqrt{5}}{4})} \\

\huge{\bf{\boxed{= \frac{1}{16}}}} \\

Hope this helps you!

Answered by Math500
0

cos 36 = [\sqrt{5} + 1]/4

Similar questions