Math, asked by himanshu9071, 1 year ago

cos 38° cosec52° ÷cot 18°cot35°cot60°cot55°cot72°+sin square 12°+sin square 78°÷sec square 45°cosec square 45°

Answers

Answered by JinKazama1
13

Answer:

\sqrt{3}+\frac{1}{4}

Step-by-step explanation:

We  know that,

sin(\theta) =cos(90\degree-\theta)\\ \\ sin^2(\theta) +cos^2(\theta) = 1 \\ \\ cot(\theta) = tan(90\degree-\theta) \\cos(\theta) = sin(90\degree-\theta) \\ \\ sec^2(45\degree)=cosec^2(45\degree) = 2

Now,

\frac{cos(38\degree)cosec(52\degree)}{cot(18\degree)*cot(35\degree)cot(60\degree)cot(55\degree)cot(72\degree)}+\frac{sin^2(12\degree)+sin^2(78\degree)}{sec^2(45\degree)+cosec(45\degree)} \\ \\ =>\frac{cos(38\degree)sec(38\degree)}{cot(18\degree)*cot(35\degree)cot(60\degree)tan(35\degree)tan(72\degree)}+\frac{sin^2(12\degree)+cos^2(12\degree)}{2+2} \\ \\ => \frac{1}{cot(60\degree)}+\frac{1}{4} \\ \\ => \sqrt{3} + \frac{1}{4}


mysticd: Cos theta = sec (90-theta) is wrong .plz edit
JinKazama1: Thanks, provide edit option. Answer remains same since I hadn't used this.
mysticd: And use = symbol instead of implies
Answered by swathikoushik02
2

Answer:

here is your required answer,

Attachments:
Similar questions