Math, asked by brama, 1 year ago

cos^3a-cos3a/cos a + sin^3a
+sin3a /sina=3 prove

Answers

Answered by MaheswariS
0

\underline{\textbf{To prove:}}

\mathsf{\dfrac{cos^3A-cos\,3A}{cos\,A}+\dfrac{sin^3A+sin\,3A}{sin\,A}=3}

\underline{\textbf{Solution:}}

\underline{\textbf{Identities used:}}

\mathsf{sin\,3\theta=3\,sin\,\theta-4\,sin^3\theta}

\mathsf{cos\,3\theta=4\,cos^3\theta-3\,cos\,\theta}

\mathsf{Consider,}

\mathsf{\dfrac{cos^3A-cos\,3A}{cos\,A}+\dfrac{sin^3A+sin\,3A}{sin\,A}}

\textsf{Using the above identities, we get}

\mathsf{=\dfrac{cos^3A-(4\,cos^3A-3\,cos\,A)}{cos\,A}+\dfrac{sin^3A+(3\,sin\,A-4\,sin^3A)}{sin\,A}}

\mathsf{=\dfrac{cos^3A-4\,cos^3A+3\,cos\,A}{cos\,A}+\dfrac{sin^3A+3\,sin\,A-4\,sin^3A}{sin\,A}}

\mathsf{=\dfrac{-3\,cos^3A+3\,cos\,A}{cos\,A}+\dfrac{3\,sin\,A-3\,sin^3A}{sin\,A}}

\mathsf{=-3\,cos^2A+3+3-3\,sin^2A}

\mathsf{=6-3\,cos^2A-3\,sin^2A}

\mathsf{=6-3(cos^2A+sin^2A)}\;\;\;\;\mathsf{(\because\,sin^2\theta+cos^2\theta=1)}

\mathsf{=6-3(1)}

\mathsf{=6-3}

\mathsf{=3}

\implies\boxed{\mathsf{\dfrac{cos^3A-cos\,3A}{cos\,A}+\dfrac{sin^3A+sin\,3A}{sin\,A}=3}}

Similar questions