Math, asked by mathsdoubts22, 9 months ago

cos^3A+sin^3A/(sin A +cos A) + cos^3A-sin^3A/(cos A-sinA) ​

Answers

Answered by Anonymous
6

Given:

 \frac{ {\cos}^{3} a+  {\sin}^{3} a}{\cos \: a + \sin \: a}  +  \frac{ {\cos}^{3} a -  {\sin}^{3} a }{\cos \: a - \sin \: a}

To Find:

Value of above expression

Answer:

2

Explanation:

 \frac{ {\cos}^{3}a \:  +  \:  {\sin}^{3}  a}{\cos \: a + \sin \: a}  +  \frac{ {\cos}^{3}a -  {\sin}^{3}a  }{\cos \: a - \sin \: a}

We know that:

 {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  +  {b}^{2}   -  ab)

 {a}^{3}  -  {b}^{3}  =(a  -  b )( {a}^{2}  +  {b}^{2}   +  ab)

 \frac{(\cos \: a +\ sin \: a)( {\cos}^{2}a \:  +  {\sin}^{2}a \:  - \cos \: a  \:  \: \sin \: a) }{(\cos \: a + \sin \: a)}  +  \frac{(\cos \: a - \sin \: a)( {\cos}^{2}a +  {\sin}^{2} a  + \cos \: a \:  \: sin \: a }{\cos \:a }

We know that,

sin² a + cos² a = 1

a divided by a is 1

Cancelling (cos a+sin a) and (cos a-sin a) and performing calculation, we get:

(1 - \cos \: a \:  \:\sin \: a) + (1 + \cos \: a \:  \: \sin \: a)

1 - \cos \: a \:  \: \sin \: a + 1 + \cos \: a \:  \: \sin \: a

Cancelling cos a sin a, we get:

2

Additional Information:

Identities Used:

 {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  +  {b}^{2} - ab)

 {a}^{3}  -  {b}^{3}  = (a - b) ({a}^{2}  +  {b}^{2} + ab)

 {\sin}^{2} a +  {\cos}^{2} a = 1

Other Trigonometric Identities:

 {\sec}^{2} a -  {\tan}^{2} a = 1

 {\cosec}^{2} a -  {\cot}^{2} a = 1

Similar questions