cos^3a-sin^3a/sina-cos2a=2+sin2a/2
Answers
Answered by
3
Step-by-step explanation:
1. 2(4cos^3 pi/9 - 3 cos pi/9)
=2(cos(3*pi/9))
=2*cos(pi/3)
=2*1/2
=1
2.
To prove it we need a formula for
sin(3x) = sin2x cos x - sin x cos 2x
= 2 sin x cos^2 x - sin x ( 1 - 2 sin ^2 x)
2 sin x (1-sin^2 x) - sin x ( 1 - 2 sin ^2 x)
Sin3x= 3sin x - 4 sin ^3 x
and
cos 3x = cos 2x cos x - sin 2x sin x =
(2 cos^2 x - 1) cos x - 2 sin ^2 x cos x
(2 cos^2 x - 1) cos x - 2 (1 - cos^2 x) cos x=
Cos3x = 4 cos ^3 x - 3 cos x
(3sin x - 4 sin ^3 x)/sin x - (4 cos ^3 x - 3 cos x)/cos x
= 3 - 4 sin ^2 x + 4 cos ^2 x +3
= 6 -4(sin^2 x + cos^2 x)
= 6 - 4*1
= 2
3. sin(a)sin(60 - a)sin(60 + a)
=> sin(a) * (sin(60)cos(a) - sin(a)cos(60)) * (sin(60)cos(a) + sin(a)cos(60))
=> sin(a) * (sin(60)^2 * cos(a)^2 - sin(a)^2 * cos(60)^2)
=> sin(a) * ((3/4) * cos(a)^2 - (1/4) * sin(a)^2)
=> (1/4) * sin(a) * (3cos(a)^2 - sin(a)^2)
=> (1/4) * sin(a) * (3 - 3sin(a)^2 - sin(a)^2)
=> (1/4) * (3sin(a) - 4sin(a)^3)
=> (1/4) * sin(3a)
5.
It is very simple ..
Just expand the function ..
Tan A + (tan 60 + tan A )/(1-tan60.tanA) + (tan (120) + tan A )/(1-tan120.tanA)
tan A + [root(3) + tanA]/[1-root(3).tanA] + [ tan A - root(3) ] /[1 + root(3).tanA]
tanA + [ root(3) + 3.tanA + tanA + root(3).tan^2A + tanA - root(3) -root(3).tan^2A + 3.tanA ] / [ 1 - 3tan^2A ]
tanA + [ 8tanA] / [ 1-3tan^2A ]
[9tanA - 3.tan^3A ]/[1-3tan^2A]
= 3.tan3A ( eqaul to RHS )
Hence proved
Similar questions