cos 3A+sin3A/cos A-sin A = 1+2sin2A
Answers
Answered by
2
Answer:
Step-by-step explanation:
cos3A = 4cosA - 3cos³A,
sin3A = 3sinA - 4sin³A,
substituting we get,
(4cos³A - 3cosA + 3sinA - 4sin³A)/cosA - sinA
= 4(cos³A - sin³A) - 3(cosA-sinA) / cosA - sinA
Since, cos³A - sin³A is of form a³ - b³ => a³ - b³ = (a - b)(a²+ b² + ab)
= 4(cosA - sinA)(cos²A + sin²A + cosAsinA) - 3(cosA-sinA) / cosA - sinA
//Cancel out cosA - SinA from numerator and denominator
= 4(cos²A+sin²A+sinAcosA) - 3
= 4 ( 1 + sinAcosA) - 3 (∵ Sin²A + Cos²A = 1)
= 4 + 4sinAcosA - 3
= 1 + 4sinAcosA
= 1 + 2sin2A. ( ∵ Sin2A = 2SinACosA)
= R.H.S
Hence proved
Similar questions