Math, asked by anup15, 1 year ago

cos^3x - sin^3x/cosx - sinx =1/2(2+sin2x)

Answers

Answered by roshni0602
38
using a^3-b^3 formula and using the sin2x formula
Attachments:
Answered by wifilethbridge
31

Answer:

To Prove : \frac{cos^3x - sin^3x}{cosx - sinx} =\frac{1}{2}(2+sin2x)

Solution :

LHS : \frac{cos^3x - sin^3x}{cosx - sinx}

Identity : a^3-b^3=(a-b)(a^2+ab+b^2)

\frac{(cos x - sinx)(cos^2x + sin^2x+cos x sin x)}{cosx - sinx}

(cos^2x + sin^2x+cos x sin x)

Identity : Sin^2x +Cos^2x= 1

(1+cos x sin x)

Identity : 2 sin x cos x = Sin 2x

(1+\frac{Sin2x}{2})

(\frac{2+Sin2x}{2})

\frac{1}{2}(2+Sin2x)

Hence LHS = RHS

Similar questions