Math, asked by nawarajkarke45, 23 hours ago

cos 4(theta)= 8cos(theta)^4- 8cos(theta)^2+1​

Answers

Answered by Kazoku
62

Given : cos 4(theta)= 8cos(theta)^4- 8cos(theta)^2+1

Some trigonometrical identities :

\mathtt{1) {sin}^{2} \: x  +  {cos}^{2} \: x = 1 }\implies\mathtt{ {sin}^{2} \: x = 1 -  {cos}^{2} \: x  } \\  \\ \mathtt{2)sin(x + y) = sin \: x \:  \times cos \: y + cos \: x \times sin \: y} \\  \\ \mathtt{3)cos(x + y) = cos \: x \times   cos \: y + sin \: x \times sin \: y}

So,

\mathtt{cos(4x) =cos(2x + 2x) } \\  \\  \\ \implies\mathtt{cos(2x) \times cos(2x) - sin(2x) \times sin(2x)} \\  \\  \\ \implies\mathtt{(cos(2x)) {}^{2} - (sin(2x)) {}^{2}  } \\  \\ \\  \implies\mathtt{(cos(x + x)) {}^{2} - (sin(x + x)) {}^{2}  } \\  \\ \\  \implies\mathtt{(cos \: x \times  cos \: x - sin \: a \times sin \: x) {}^{2}  - (sin \: x \times cos \: x  + sin \: x \times cos \: x) {}^{2} }  \\  \\ \\  \implies\mathtt{(cos {}^{2}  \: x - sin {}^{2} \: x) {}^{2}  - (2sin \: x \times cos \: x) {}^{2}  }  \\  \\ \\  \implies\mathtt{(cos {}^{2}  \: x - sin {}^{2} \: x) {}^{2}  - 4sin {}^{2} \: x \times cos {}^{2}  \: x   }  \\  \\ \\  \implies\mathtt{(cos {}^{2} \: x  - (1 - cos {}^{2} \: x)) {}^{2}  - 4(1 - cos {}^{2}   \: x)cos {}^{2} \: x }  \\  \\ \\  \implies\mathtt{(2cos {}^{2} \: x - 1) {}^{2}  - 4cos {}^{2} \: x + cos {}^{4}   \: x }  \\  \\  \\ \implies\mathtt{4cos {}^{4} \: x - 4cos {}^{2}  \: x1 - 4cos {}^{2} \: x   + 4cos {}^{4} \: x }  \\  \\ \\  \implies\mathtt{8cos {}^{4} \: x - 8cos {}^{2} \: x   + 1}  \\  \\

Similar questions