Math, asked by prachishinde0803, 9 months ago

cos^4 theta - sin^ 4 theta + 1 = 2 cos ^ 2 theta . prove that . ​

Answers

Answered by devdanu
0

Step-by-step explanation:

cos 4 theta- sin 4theta=2cos 2 theta-1

lhs

(cos2)2theta-(sin^2)2

(cos2theta+sin^2theta)(cos^2 theta-sin2 theta)

cos 2 theta-sin2 theta

cos 2theta-1+cos2theta

2cos2 theta-1

=rhs

hence proved

Answered by gpvvsainadh
1

Step-by-step explanation:

 { \cos}^{4}  \alpha  -  { \sin }^{4}  \alpha  +   1  \\ ( { \cos }^{2}  \alpha   +  { \sin}^{2} \alpha  )( { \cos }^{2}  \alpha   -    { \sin}^{2}  \alpha  ) + 1\\ ( 1)( { \cos }^{2}  \alpha  -  { \sin }^{2}  \alpha  )+1 \\  { \cos}^{2}  \alpha  - (1 -  { \cos }^{2}  \alpha ) + 1 \\  { \cos }^{2}  \alpha  - 1 +  { \cos}^{2}  \alpha  + 1 \\ 2 { \cos }^{2}  \alpha

Similar questions