Math, asked by johnfrancis7816, 1 year ago

Cos^4 theta-sin^4 theta =2/3 then the value of 2 cos2 theta-1 is

Answers

Answered by adarshtushar3496
9

Hope u get it .......................

Attachments:
Answered by mysticd
17

 Given \: cos^{4} \theta - sin^{4} \theta = \frac{2}{3}

 \implies  (cos^{2} \theta )^{2} - (sin^{2} \theta)^{2} = \frac{2}{3}

 \implies  (cos^{2} \theta - sin^{2} \theta) (cos^{2} \theta + sin^{2} \theta)=\frac{2}{3}

 \underline {\blue { By \: Algebraic I\:dentity : }}

 \boxed { \pink { a^{2} - b^{2} = ( a - b )( a + b ) }}

 \implies  cos^{2} \theta - sin^{2} \theta =\frac{2}{3}

 \underline {\blue { By \: Trigonometric\:dentity : }}

 \boxed { \pink { cos^{2}\theta + sin^{2} \theta = 1 }}

 \implies cos^{2} \theta - ( 1 - cos ^{2} \theta) = \frac{2}{3}

 \implies cos^{2} \theta -  1 + cos ^{2} \theta) = \frac{2}{3}

 \implies 2cos^{2} \theta - 1 = \frac{2}{3}

Therefore.,

 \red { Value \:of\: 2cos^{2} \theta - 1 }\green {= \frac{2}{3} }

•••♪

Similar questions