Math, asked by SufiyanKhan1122, 6 hours ago

cos^(4) theta -sin^(4) theta = 2 cos^(2)theta-1 = 1-2 sin^(2)​

Answers

Answered by ArunSivaPrakash
0

Given:  y= cos^{4}\alpha-sin^{4}\alpha

To find: y=cos^{4} \alpha - sin^{4} \alpha =2cos^{2} \alpha -1=1-2sin^{2} \alpha, proof

Solution: y= cos^{4}\alpha -sin^{4}\alpha

                y=(cos^{2}\alpha )^{2}- (sin^{2} \alpha )^{2}

using formula a^{2} -b^{2}=(a+b)(a-b)    

          ⇒ y=(cos^{2}\alpha + sin^{2} \alpha )(cos^{2}\alpha -sin^{2} \alpha  )

   since,    sin^{2} \alpha +cos^{2}\alpha = 1

            ⇒y=cos^{2} \alpha -sin^{2} \alpha

            ⇒ y= 1-sin^{2} \alpha -sin^{2} \alpha , (using cos^{2} \alpha =1-sin^{2} \alpha)

            y= 1-2sin^{2} \alpha-------(1)

            ⇒y=1-2(1-cos^{2} \alpha ),   (using sin^{2} \alpha =1-cos^{2} \alpha)

            ⇒y=2cos^{2} \alpha -1--------(2)

          from equation (1) &(2)

            cos^(4) theta -sin^(4) theta = 2 cos^(2)theta-1 = 1-2 sin^(2)​

             hence proved

Similar questions