cos [π/4 -x]cos[π/4-x] - sin[π/4-x]sin[π/4-y]=sin(x+y)
prove that
Answers
Answered by
0
cosxcosy-sinxsiny=cos(X+y) ,RHS cos (π/4-x+π/4-y)=cos (π/2-(x+y))=sin(x+y). [cos(90-x)=sinx
Answered by
6
Answer:
LHS : cos [x/4 -x]cos[π/4-x] - sin[π/4-x]sin[π/4-y]
Dividing and multiplying by 2.
⇒ ½ × 2 {cos [x/4-x]cos[π/4-x] - sin[π/4-x]sin[π/4-y]}
⇒ ½ {2cos(π/4-x)cos(π/4-x)} + ½{-2sin(π/4-x)sin(π/4-y)}
Using the identities :
- 2cos x cos y = cos(x+y) + cos(x-y)
- -2sin x sin y = cos(x+y) - cos(x-y)
⇒ ½ [cos{π/4-x+π/4-y} + cos{π/4-x-(π/4-y)}] + ½ [cos{π/4-x+π/4-y} - cos{π/4-x-(π/4-y)}]
(The second term and the fourth term cancels out because of opposite signs)
⇒ ½ × 2 [cos{π/4-x+π/4-y}]
⇒ cos{π/4-x+π/4-y}
⇒ cos{π/4-(x+y)}
⇒ sin(x+y) : RHS
SOME IMPORTANT IDENTITIES –
- 2cos x cos y = cos(x+y) + cos(x-y)
- -2sin x sin y = cos(x+y) - cos(x-y)
- 2sin x cos y = sin(x+y) + sin(x-y)
- 2cos x sin y = sin(x+y) - sin(x-y)
- cos(A+B) = cosAcosB - sinAsinB
- cos(A-B) = cosAcosB + sinAsinB
Similar questions