cos(40 – θ) – sin(50 +θ) +cos²40+cos²50/sin²40+sin²50,Evaluate it.
Answers
Answered by
56
Answer can be given as some numerical value.Solve as shown below attachment.
Attachments:
Answered by
189
cos(40 - θ) - sin(50 + θ) + {cos²40° + cos²50°}/{sin²40° + sin²50°}
we know , sin(90° - x) = cosx and cos(90° - x) = sinx.
so, sin(50+ θ) = sin{90° -(40° - θ)} = cos(40° -θ)----(1)
cos40° = cos(90° - 50°) = sin50° ----(2)
from equations (1) and (2),
= cos(40° - θ) - cos(40° - θ) + (sin²50° + cos²50°)/(sin²40° + cos²40°)
[ sin²50° + cos²50° = 1 and sin²40° + cos²40° = 1]
= 0 + 1/1 = 1 [ans]
we know , sin(90° - x) = cosx and cos(90° - x) = sinx.
so, sin(50+ θ) = sin{90° -(40° - θ)} = cos(40° -θ)----(1)
cos40° = cos(90° - 50°) = sin50° ----(2)
from equations (1) and (2),
= cos(40° - θ) - cos(40° - θ) + (sin²50° + cos²50°)/(sin²40° + cos²40°)
[ sin²50° + cos²50° = 1 and sin²40° + cos²40° = 1]
= 0 + 1/1 = 1 [ans]
Similar questions