Math, asked by Bhardwajpushkar3588, 1 year ago

Cos 43° = x/√x²+y² then tan 47°

Answers

Answered by slicergiza
8

Answer:

\frac{x}{y}

Step-by-step explanation:

Given,

\cos 43^{\circ}=\frac{x}{\sqrt{x^2 + y^2}}

\implies \cos (90^{\circ}-47^{\circ}) = \frac{x}{\sqrt{x^2 + y^2}}

\implies \sin 47^{\circ}= \frac{x}{\sqrt{x^2 + y^2}}

Now,

\sin \theta = \frac{P}{H}

By the Pythagoras theorem,

H^2 = P^2 + B^2

\implies B=\sqrt{H^2 - P^2}=\sqrt{x^2 + y^2 - x^2}=\sqrt{y^2}=y

Thus,

\tan 47^{\circ}=\frac{P}{B}=\frac{x}{y}

Attachments:
Similar questions