Math, asked by ayushgathe9523, 1 year ago

Cos 45 degree upon sec 30 degree + cosec 30 degree evaluate

Answers

Answered by Anonymous
7

To find the value of:

 \mathsf{ \frac{cos45}{sec30 + cosec30} } \\

From the trigonometric table,

cos45= 1/√2

sec30= 2/√3

cosec30=2

Substituting the values,we obtain:

 \sf{ \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3} }  + 2} } \\  \\  =  \sf{ \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2 + 2 \sqrt{3} }{ \sqrt{3} } } } \\  \\  =   \sf{\frac{1}{ \sqrt{2} }  \times   \frac{ \sqrt{3}  }{2 + 2 \sqrt{3} }}  \\  \\   =  \boxed{ \sf{\frac{ \sqrt{3} }{2( \sqrt{2}  +  \sqrt{6}) }}}

Answered by Panzer786
3

Step-by-step explanation:

Hi,

Cos 45° = 1/2

Sec30° = 2/3

Cosec30° = 2

Cos 45° / Sec 30° + Cosec 30°

1/2 / 2/3 + 2

1/2 / 2 + 23 / 3

1/2 + 3 / 2 + 3

3 / 2 ( 2 + 3 )

3/22 + 6

Hope it will help you :)

Similar questions