Math, asked by chaitramchoudri, 6 months ago

cos (45° + A) + cos (45º - A) = √2cosA​

Answers

Answered by OfficialPk
4

Answer:

we know that

Cos(A+B)=cosAcosB-sinAsinB

Cos( A-B)=cosAcosB+sinAsinB)

so

cos(45°+A) = cos45°cosA - sin45°sinA

=\frac{1}{\sqrt{2}}cosA - \frac{1}{\sqrt{2}}sinA

=\frac{cosA}{\sqrt{2}} - \frac{sinA}{\sqrt{2}}

=\frac{cosA-sinA}{\sqrt{2}}

cos(45°-A) = cos45°cosA - sin45°sinA

= \frac{1}{\sqrt{2}}cosA + \frac{1}{\sqrt{2}}sinA

= \frac{cosA}{\sqrt{2}} + \frac{sinA}{\sqrt{2}}

= \frac{cosA+sinA}{\sqrt{2}}

cos (45° + A) + cos (45º - A) = \frac{cosA-sinA}{\sqrt{2}} + \frac{cosA+sinA}{\sqrt{2}}

= \frac{cosA-sinA+cosA+sinA}{\sqrt{2}}

= \frac{2cosA}{\sqrt{2}}

= rationalisng denominator \sqrt{2}

= \frac{2\times\sqrt{2}cosA}{{2}}

= \sqrt{2}cosA

Similar questions