cos 45° divided by sec 30° + cosec 30°
Answers
Answered by
3
Answer:
Given, cos 45/(sec 30 + cosec 30)
= (1/√2)/(2/√3 + 2) {since cos 45 = 1/√2, sec 30 = 2/√3, cosec 30 = 2}
= (1/√2)/{(2 + 2√3)/√3}
= (√3/√2)/(2 + 2√3)
= √3/{√2*(2 + 2√3)}
= √3/(2√2 + 2√3*√2)
= √3/(2√2 + 2√6)
So, cos 45/(sec 30 + cosec 30) = √3/(2√2 + 2√6)
Answered by
49
Answer:
⇒ (1/√2)/(2/√3 + 2)
Note:
- cos 45 = 1/√2
- sec 30 = 2/√2
- cosec 30 = 2
Calculations:
⇒(1/√2)/[(2 + 2√3)/√3]
⇒(√3/√2)/(2 + 2√3)
⇒√3/[√2 × (2 + 2√3)]
⇒ √3/(2√2 + 2√3 × √2)
⇒√3/(2√2 + 2√6)
Therefore, cos 45/(sec 30 + cosec 30) is equal to √3/(2√2 + 2√6).
Similar questions