Math, asked by pihu833, 1 year ago

cos 45°/sec 30°+cosec 30°​

Answers

Answered by sim3613
12

Hope it may help you .....

Attachments:
Answered by Anonymous
47

\sf\large\frac{cos\:45}{sec\:30+cosc\: 30}

__________________________

∵ ( cos 45 = 1/√2

sec 30 = 2/√3

csc 30 = 2 )

__________________________

by substituting the values :-

\sf\frac{\frac{1}{\sqrt{2}}}{(\frac{2}{\sqrt{3}})+(\frac{2}{1})}=  \frac{\frac{1}{\sqrt{2}}}{\frac{2+2 \sqrt{3}}{\sqrt{3}}}

(we will interchange the places of √3 and 1 so as not to get the value in negative form)

\sf\frac{1}{\sqrt{2}}\times  \frac{\sqrt{3}}{2+2\sqrt{3}}=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2(\sqrt{3}+1)}

( Rationalizing the denominator because the final value must not be irrational )

\sf\frac{\sqrt{3}}{2\sqrt{2}(\sqrt{3}  + 1)}\times\frac{\sqrt{2}(\sqrt{3}-1)}{\sqrt{2}(\sqrt{3}-1)}

\sf\frac{\sqrt{6}(\sqrt{3}-1)}{4(({\sqrt{3})}^{2}-({1)}^{2}}

\sf\frac{\sqrt{18} -\sqrt{6}}{4(2)}

\sf\frac{\sqrt{2\times3\times 3}-  \sqrt{2\times3}}{8}

\sf\boxed{\frac{3\sqrt{2}-\sqrt{6}}{8}}

Similar questions