Math, asked by payalyadav001, 10 months ago

cos 45°/sec 30° +cosec 30°​

Answers

Answered by BrainlyGem
9

Answer:

 \frac{ \frac{1}{2} }{ \frac{2}{ \sqrt{3} } }  + 2 \\  =  \frac{ \sqrt{3} }{4}  + 2 \\  =  \frac{ \sqrt{3}  + 8}{4}

Hope it helps you.

plz Mark it as brainliest.

Answered by MemonMahin07
18

cos 45°/sec 30° + cosec 30°

 \frac{ \cos(45°) }{ \cos(30 °)  +  \cosec(30°) }  \\  \\  =  \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3} } + 2 }  \\  \\  =  \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2 + 2 \sqrt{3} }{ \sqrt{3} } }  \\  \\  =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2(1 +  \sqrt{3)} }  \\  \\  =  \frac{ \sqrt{2} }{ \sqrt{2} \times  \sqrt{2}  }  \times  \frac{ \sqrt{3}  \times ( \sqrt{3}  + 1)}{2( \sqrt{3 }   +  1)( \sqrt{3}  - 1)}  \\  \\  =  \frac{ \sqrt{6} ( \sqrt{3} - 1) }{4 \times (( \sqrt{3} ) {}^{2} -  {1}^{2}  )} \\  \\  =  \frac{ \sqrt{6 } ( \sqrt{3}  - 1)}{4 \times (3 - 1)}  \\  \\  =    \frac{ \sqrt{6} ( \sqrt{3} - 1) }{4(2)}  \\  \\ =    \frac{ \sqrt{6} ( \sqrt{3} - 1) }{8}  \\  \\

Similar questions