Math, asked by devarshnagrecha5202, 11 months ago

cos ( 45° + x ) + cos ( 45° - x ) = ?

Answers

Answered by Rakrock
6

Step-by-step explanation:

use the formula Cos(A+B) and Cos (A-B)

Attachments:
Answered by pinquancaro
3

\cos ( 45^\circ + x ) +\cos ( 45^\circ - x )=\sqrt2\cos x

Step-by-step explanation:

To find : \cos ( 45^\circ + x ) +\cos ( 45^\circ - x ) = ?

Solution :

Using trigonometric property,

\cos(A+B)+\cos(A-B)=2\cos A\cos B

Here, A=45 and B=x

Substitute in the formula,

\cos ( 45^\circ + x ) +\cos ( 45^\circ - x )=2\cos 45^\circ\cos x

We know, \cos 45^\circ=\frac{1}{\sqrt2}

\cos ( 45^\circ + x ) +\cos ( 45^\circ - x )=2(\frac{1}{\sqrt2})\cos x

\cos ( 45^\circ + x ) +\cos ( 45^\circ - x )=\sqrt2\cos x

#Learn more

5sin 30°+3tan 45°, Find the values of it

https://brainly.in/question/4584981

Similar questions