cos (45º -A) - cos (45° + A
(A) √2 cos A
(C) √2 sin A
(B) 12 sin A
(D) 2 cos A
Answers
Step by step explanation:-
Given to find value of :-
cos (45º -A) - cos (45° + A)
Formulae to know :-
- cos (A - B ) = cosA cosB + sinAsinB
- cos ( A + B ) = cosA cosB - sinA sinB
sin45° = 1/√2
- cos (45- A ) In the form of cos (A - B)
- cos (45 + A ) in the form of cos (A + B )
Lets solve !
cos (45º -A) - cos (45° + A)
cos45 cosA + sin45 sinA - [ cos45 cosA - sin45 sinA]
cos45 cosA + sin45 sinA - cos45cosA + sin45 sinA
Keep like terms together
cos45cosA - cos45 cosA + sin45 sinA + sin45 sinA
sin45 sinA + sin45 sinA
1/√2 sinA + 1/√2 sinA
2/√2 sinA
√2 sinA
So, cos (45º -A) - cos (45° + A) = √2 sinA
Know more :-
tan ( A +B ) = tanA + tanB / 1 - tanAtanB
tan( A-B) = tanA - tanB/1 + tanAtanB
cot ( A + B ) = cotBcotA -1 / cotB + cotA
cot ( A - B ) = cotB cotA + 1/ cotB - cotA
tan(45+ A) = 1+tanA/1 - tanA
tan (45 - A ) = 1-tanA/1 + tanA
Trignometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
csc²θ - cot²θ = 1
Trignometric relations
sinθ = 1/cscθ
cosθ = 1 /secθ
tanθ = 1/cotθ
tanθ = sinθ/cosθ
cotθ = cosθ/sinθ
Trignometric ratios
sinθ = opp/hyp
cosθ = adj/hyp
tanθ = opp/adj
cotθ = adj/opp
cscθ = hyp/opp
secθ = hyp/adj
➽ cos (45º -A) - cos (45° + A)
We know ,
● Cos(45° - A) = cos x
● Cos(45° + A) = cos y
Now, Apply the formula here,
cos (45º -A) - cos (45° + A) =
━━━━━━━━━━━━━━━━━━━━━━━━━
Therefore ,
☞ cos (45º -A) - cos (45° + A) = √2sin A
━━━━━━━━━━━━━━━━━━━━━━━━━