Cos 48 sin 18 -sin48 cos 18=-1/2
Answers
Answered by
16
Step-by-step explanation:
sin18cos48 - sin 48cos18
we know
sin( A-B) = sinAcosB - sinBcosA
sin(48-18) = sin48cos18 - sin18cos48
sin30 = sin48cos18 - sin18cos48
sin48cos18 - sin18cos48 = 1/2
taking - as common
-(sin18cos1/48 - sin48cos18) =1/2
sin18cos1/48 - sin48cos18 = -1/2
this will clarify you☺️
pls follow me I am new here..
Answered by
1
Answer:
hence proved
therefore, cos48sin18 -sin48 cos18=-1/2
Step-by-step explanation:
let us rewrite
let us rewrite cosAsinB -sinAcosB
let us rewrite cosAsinB -sinAcosBinto
- let us rewrite cosAsinB -sinAcosBinto - sin AcosB + cosA sinB
- let us rewrite cosAsinB -sinAcosBinto - sin AcosB + cosA sinB-(sinAcosB - cosAsinB)
- let us rewrite cosAsinB -sinAcosBinto - sin AcosB + cosA sinB-(sinAcosB - cosAsinB)- [sin(A -B)]
- let us rewrite cosAsinB -sinAcosBinto - sin AcosB + cosA sinB-(sinAcosB - cosAsinB)- [sin(A -B)]- [sin(48-18)]
- let us rewrite cosAsinB -sinAcosBinto - sin AcosB + cosA sinB-(sinAcosB - cosAsinB)- [sin(A -B)]- [sin(48-18)]- sin30
- let us rewrite cosAsinB -sinAcosBinto - sin AcosB + cosA sinB-(sinAcosB - cosAsinB)- [sin(A -B)]- [sin(48-18)]- sin30-1/2
Similar questions