cos 4a-cos2a=sin4a-sin2a
Answers
Answered by
99
cos 4 A - Cos2A
= (cos2A)2 - (cosA)2
= (1- sin2A)2 - cos2A
= 1 + sin4A - 2sin2A -( 1- sin2A)
=1+ sin4A - 2 sin2A -1 + sin2A
=sin4A - sin2A
since LHS = RHS
hence proved.
= (cos2A)2 - (cosA)2
= (1- sin2A)2 - cos2A
= 1 + sin4A - 2sin2A -( 1- sin2A)
=1+ sin4A - 2 sin2A -1 + sin2A
=sin4A - sin2A
since LHS = RHS
hence proved.
Answered by
39
To prove:
Solution:
Consider the LHS,
By formula,
Substitute in the above equation, we get
Hence proved.
Similar questions