Cos^⁴A - Sin^⁴A = 1-2 Sin ²A
Answers
Answered by
2
Step-by-step explanation:
To Prove: sin⁴A + cos⁴A = 1 - 2sin²A × cos²A
Solution: sin⁴A + cos⁴A can be expressed as;
α² + β² = (α + β)² - 2αβ
(sin²A)² + (cos²A)² = (sin²A + cos²A)² - 2(sin²A)(cos²A)
sin
2
θ+cos
2
θ=1
(sin²A)² + (cos²A)² = (1)² - 2(sin²A)(cos²A)
(sin²A)² + (cos²A)² = 1 - 2 × sin²A × cos²A
Hence Proved.
Identities used in the Solution:
α² + β² = (α + β)² - 2αβ
sin²θ + cos²θ = 1
Similar questions