Math, asked by dishavyas37, 1 month ago

cos 4x = 1 - 8 cos^2x + 8 cos^4x
Prove LHS= RHS​

Answers

Answered by Anonymous
14

To prove :

 \sf \:  \cos(4x)  = 1 - 8 \cos {}^{2} (x)  + 8 { \cos }^{4} (x)

Consider LHS,

 \sf \: LHS =  \cos(4x)  \\  \\  \implies \sf \: LHS = 2 { \cos }^{2} (2x) - 1 \\  \\ \implies \sf \: LHS = 2 \bigg \{  { 2 { \cos}^{2}(x)  }^{} -1  \bigg \}   {}^{2} - 1 \\  \\ \implies \sf \: LHS = 2  \bigg \{ 4 { \cos {}^{4} (x) }^{}  - 4 \cos {}^{2} (x)  + 1 \bigg \}- 1 \\  \\ \implies \sf \: LHS =  8 { \cos {}^{4} (x) }^{}  - 8 \cos {}^{2} (x)  + 2- 1 \\  \\ \implies \sf \: LHS = 1 - 8 \cos {}^{2} (x)  + 8 { \cos }^{4} (x) \\  \\  \implies \sf \: LHS = RHS

Similar questions