cos^4x/cos^2y+sin^4x/sin^2y=1 then prove cos^4y/cos^2x+sin^4y/sin^2x=1
Answers
Answered by
48
Answer:
Step-by-step explanation:
Cos^4x/cos^2y+sin^4x/sin^2y=1 then prove cos^4y/cos^2x+sin^4y/sin^2x=1
Cos⁴x/Cos²y + Sin⁴x/Sin²y = 1
=> Cos⁴xSin²y + Sin⁴xCos²y = Cos²ySin²y
=> Cos⁴xSin²y + (1 - Cos²x)²Cos²y = Cos²ySin²y
=> Cos⁴xSin²y + (1 + Cos⁴x -2Cos²x )Cos²y = Cos²ySin²y
=> Cos⁴xSin²y + Cos⁴xCos²y + Cos²y - 2Cos²xCos²y = Cos²ySin²y
=> Cos⁴x(Sin²y + Cos²y ) + Cos²y(1 - Sin²y) - 2Cos²xCos²y = 0
=> Cos⁴x + Cos⁴y - 2Cos²xCos²y = 0
=> (Cos²x - Cos²y)² = 0
=> Cos²x = Cos²y
=> Sin²x = Sin²y
Using this value in
Cos⁴y/Cos²x + Sin⁴y/Sin²x = 1
LHS = Cos⁴y/ Cos²y + Sin⁴y/Sin²y
= Cos²y + Sin²y
= 1
= RHS
Similar questions