Math, asked by Evilanto, 9 months ago

cos^4x-sin^4x is equal to?

Answers

Answered by smeet41
4

Answer:

Cos^2x- Sin^2x

Step-by-step explanation:

  • Cos^4x - Sin^4x
  • = (cos^2x)^2 - (sin^2x)^2
  • =(cos^2x + sin^2x) (cos^2x - sin^2x).....{ (a^2-b^2)= (a+b) (a-b)}
  • =cos^2x - sin^2x....{cos^2x + sin^2x = 1}

Answered by ItzArchimedes
11

Solution

cos⁴x - sin⁴x

It is in the form of

a⁴ - b⁴ = ( - )( + )

→ (cos²x - sin²x)(cos²x + sin²x)

Using

cos²x - sin²x = cos2x

cos²x + sin²x = 1

→ cos2x(1)

→ cos2x

cos⁴x - sin⁴x = cos2x = cos²x - sin²x

Answers

cos⁴x - sin⁴x =

cos2x

cos²x - sin²x

2cos²x - 1

1 - 2sin²x

Knowledge enhancer

Trigonometric identities

1st identity : sin²A + cos²A = 1

2nd identity : sec²A - tan²A = 1

3rd identity : cosec²A - cot²A = 1

Similar questions