cos^4x-sin^4x is equal to?
Answers
Answered by
4
Answer:
Cos^2x- Sin^2x
Step-by-step explanation:
- Cos^4x - Sin^4x
- = (cos^2x)^2 - (sin^2x)^2
- =(cos^2x + sin^2x) (cos^2x - sin^2x).....{ (a^2-b^2)= (a+b) (a-b)}
- =cos^2x - sin^2x....{cos^2x + sin^2x = 1}
Answered by
11
Solution
cos⁴x - sin⁴x
It is in the form of
a⁴ - b⁴ = (a² - b²)(a² + b²)
→ (cos²x - sin²x)(cos²x + sin²x)
Using
• cos²x - sin²x = cos2x
• cos²x + sin²x = 1
→ cos2x(1)
→ cos2x
→ cos⁴x - sin⁴x = cos2x = cos²x - sin²x
★ Answers
cos⁴x - sin⁴x =
• cos2x
• cos²x - sin²x
• 2cos²x - 1
• 1 - 2sin²x
★ Knowledge enhancer
Trigonometric identities
1st identity : sin²A + cos²A = 1
2nd identity : sec²A - tan²A = 1
3rd identity : cosec²A - cot²A = 1
Similar questions
Math,
4 months ago
English,
4 months ago
Social Sciences,
9 months ago
Math,
9 months ago
Social Sciences,
1 year ago