cos 58/sin 22+sin22/cos68-cos 38 cosec 52/tan 18 tan 35 tan 60 tan 72 tan 55,Evaluate it.
Answers
Answered by
11
I think question is ---->

we know, sin(90- x) = cosx, cos(90- x) = sinx
tan(90- x) = cotx , cot(90- x) = tanx
cosec(90 - x) = secx , sec(90 - x) = cosecx
so, cos68° = cos(90° - 22°) = sin22° ---(1)
cos38° = cos(90° - 52°) = sin52° ----(2)
tan18° = tan(90° - 72°) = cot72° ------(3)
tan35° = tan(90° -55°) = cot55° -----(4)
from (1), (2), (3) and (4),
= sin22°/sin22° + sin22°/sin22° - (sin52°.cosec52°)/(cot72°.cot55°.tan60°.tan72°.tan55°)
= 1 + 1 - (sin52° × 1/sin52°)/{(tan72° × cot72°) × (tan55°.cot55°) × tan60°}
= 1 + 1 - 1/(1 × 1 × tan60° )
= 2 - 1/√3 [ because tan60° = √3]
= 2 - √3/3 = (6 - √3)/3
we know, sin(90- x) = cosx, cos(90- x) = sinx
tan(90- x) = cotx , cot(90- x) = tanx
cosec(90 - x) = secx , sec(90 - x) = cosecx
so, cos68° = cos(90° - 22°) = sin22° ---(1)
cos38° = cos(90° - 52°) = sin52° ----(2)
tan18° = tan(90° - 72°) = cot72° ------(3)
tan35° = tan(90° -55°) = cot55° -----(4)
from (1), (2), (3) and (4),
= sin22°/sin22° + sin22°/sin22° - (sin52°.cosec52°)/(cot72°.cot55°.tan60°.tan72°.tan55°)
= 1 + 1 - (sin52° × 1/sin52°)/{(tan72° × cot72°) × (tan55°.cot55°) × tan60°}
= 1 + 1 - 1/(1 × 1 × tan60° )
= 2 - 1/√3 [ because tan60° = √3]
= 2 - √3/3 = (6 - √3)/3
Answered by
2
Answer:
Step-by-step explanation:
PLEASE MARK ME AS BRAINLIEST
Step-by-step explanation:
2(cos58/sin32)-√3(cos38*cosec52/tan15*tan60*tan75)
= 2{cos58/sin(90-58)}-√3[{cos38*cosec(90-38)}/tan(90-75)*tan60*tan75]
= 2{cos58/cos58}-√3[cos38*sec38/cot75*tan60*tan75] (1/tanФ = cotФ)
= 2*1-√3[1/tan60]
= 2-√3(1/√3)
= 2-1
= 1
Similar questions