cos 6 sin 24 cos 72 =••••••••?
Answers
Answer:
cos 6 sin 24 cos 72
=(1/2)*2 cos 6 sin 24 cos 72
=(1/2) [sin (6+24) - sin (6-24)] * cos 72
=(1/2) [sin 30 - sin (-18)] * cos 72
=(1/2) [( 1/2) + sin 18] * cos 72................................equ (i)
We know,
Sin 72 = 2 sin 36* cos 36
Cos ( 90-72) = 2 ( 2 sin 18 * cos 18) * ( 1 - 2 sin²18)
Cos 18 = 4 sin18.cos18 * (1 - 2 sin²18)
1 = 4sin18 * (1 - 2 sin²18)........................................equ (ii)
Let sin18 = x, then
1 = 4x * ( 1 - 2x² )
8x³ - 4x + 1 = 0 [Hint : use synthetic division formula to factorize.]
(2x - 1 ) ( 4x² + 2x - 1 ) = 0
Here,
x = 1/2
sin18 = 1/2 is not possible
4x² + 2x - 1 = 0 gives
x = ( √5 - 1 ) / 4 [ Hint : compare given equations with ax² + bx + c = 0 )
sin18 = ( √5 - 1 ) / 4
Put values of sin 18 in equ(i)
= (1/2) [ 1/2 + ( √5 - 1 ) / 4] * cos 72
= (1/2) [ 1/2 + ( √5 - 1 ) / 4] * sin (90 - 72 )
= (1/2) [ 1/2 + ( √5 - 1 ) / 4] * sin 18
= (1/2) [ 1/2 + ( √5 - 1 ) / 4] * ( √5 - 1 ) / 4
= (1/2) [( √5 + 1 )/4] * ( √5 - 1 ) / 4
= (5 - 1 )/ 32
= 4/32
=1/8 Ans.
Step-by-step explanation: