Math, asked by Pemschool2208, 1 year ago

Cos 6 X + 6 cos 4x + 15 cos 2x + 10 by cos 5x + 5 cos 3 X + 10 cos x is equal to

Answers

Answered by luk3004
0

(cos(6x) + 6cos(4x) �+ 15cos(2x) + 10)/(cos(5x) + 5cos(3x) + 10cos(x))  

Consider the numerator and re-group it in this way

Numerator = cos(6x) + 6*cos(4x) �+ 15*cos(2x) + 10 =  

         = (cos(6x) + cos(4x)) + (5*cos(4x) + 5*cos(2x)) + (10*cos(2x) + 10)    (*)

Next, use the basic Trigonometry formula cos(a) + cos(b) = 2%2Acos%28%28a%2Bb%29%2F2%29%2Acos%28%28a-b%29%2F2%29%29.  You will get

             cos(6x) + cos(4x) = 2*cos(5x)*cos(x),  

             cos(4x) + cos(2x) = 2*cos(3x)*cos(x),  

             cos(2x) + 1 = 2*cos(x)*cos(x).

Substitute it into the formula (*). Then you can continue (*) in this way

Numerator = 2*cos(5x)*cos(x) + 5*2*cos(3x)*cos(x) + 10*2*cos(x)*cos(x) =  

         = 2*cos(x)*(cos(5x) + 5*cos(3x) + 10*cos(x))

Now notice that the long expression in the Numerator parentheses is exactly the denominator of the original formula.

Canceling common factors in the numerator and denominator, you get the final expression

    (cos(6x) + 6*cos(4x) �+ 15*cos(2x) + 10) / (cos(5x) + 5*cos(3x) + 10*cos(x))  = 2*cos(x)

Answer.  (cos(6x) + 6*cos(4x) �+ 15*cos(2x) + 10) / (cos(5x) + 5*cos(3x) + 10*cos(x)) = 2*cos(x).

Similar questions