Math, asked by ITZINNOVATIVEGIRL588, 6 months ago

Cos 6° • Cos 42° • Cos 66° • Cos78° =  \frac{1}{16}

Answers

Answered by BrainlyIAS
51

Formula Applied :

\sf \bigstar\ \; 2.cosx.cosy=cos(x+y)cos(x-y)

\bigstar\ \; \sf cos(120)=cos(90+30)=-sin30=-\dfrac{1}{2}

\bigstar\ \; \sf cosx-cosy=-2.sin \left(\dfrac{x+y}{2} \right) .sin\left(\dfrac{x-y}{2}\right)

\bigstar\ \; \sf  sin(90-\theta)=cos\theta

\bigstar\ \; \sf sin2\theta=2.sin\theta.cos\theta

\bigstar\ \; \sf 2.sinx.siny=cos(x-y)-cos(x+y)

Solution :

LHS

\to \sf cos\ 6.cos\ 66.cos\ 42.cos\ 78

\to \sf \dfrac{1}{4}(2.cos\ 6.cos\ 66)(2.cos\ 42.cos\ 78)

Apply 1st formula ,

\\ \to \sf \dfrac{1}{4}\left\{cos(66+6)+cos(66-6) \right\}\left\{cos(78+42)+cos(78-42)\right\} \\

\\ \to \sf \dfrac{1}{4}\left( cos(72)+cos(60)\right)\left( cos(120)+cos(36)\right)\\

\\ \to \sf \dfrac{1}{4}\left(cos\ 72+\dfrac{1}{2}\right)\left(-\dfrac{1}{2}+cos\ 36\right)\\

\\ \to \sf \dfrac{1}{4}\left(-\dfrac{1}{2}cos\ 72+cos\ 36.cos\ 72-\dfrac{1}{2}.\dfrac{1}{2}+\dfrac{1}{2}cos\ 36\right) \\

\\ \to \sf \dfrac{1}{4}\left(- \dfrac{1}{4}+cos\ 36.cos\ 72+\dfrac{1}{2}(cos\ 36-cos\ 72)\right) \\

Apply 3rd formula ,

\\ \to \sf \dfrac{1}{4}\left( -\dfrac{1}{4}+cos\ 36.cos\ 72+\dfrac{1}{2}\left(-2sin\dfrac{36+72}{2}.sin\dfrac{36-72}{2} \right) \right) \\

\\ \to \sf \dfrac{1}{4}\left( -\dfrac{1}{4}+cos\ 36.cos\ 72+\dfrac{1}{2}(-2sin\ 54.(-sin\ 18))\right) \\

\\ \to \sf \dfrac{1}{4}\left(-\dfrac{1}{4}+cos\ 36.cos\ 72+sin\ 18.sin\ 54\right) \\

\\ \to \sf \dfrac{1}{4}\left( -\dfrac{1}{4}+sin(90-36).sin(90-72)+sin\ 18.sin\ 54 \right) \\

\\ \to \sf \dfrac{1}{4}\left(-\dfrac{1}{4}+sin\ 54.sin\ 18+sin\ 54.sin\ 18 \right) \\

\\ \to \sf \dfrac{1}{4}\left(-\dfrac{1}{4}+2sin\ 54.sin\ 18 \right) \\

\\ \sf  \to \sf \dfrac{1}{4}\left(-\dfrac{1}{4}+2sin\ 54.sin\ 18\times \dfrac{cos\ 18}{cos\ 18} \right) \\

Apply formula 5 ,

\\ \to \sf \dfrac{1}{4}\left(-\dfrac{1}{4}+\dfrac{2.sin\ 54.sin\ 36}{2.cos\ 18}\right) \\

Apply formula 6 ,

\\ \to \sf \dfrac{1}{4}\left( -\dfrac{1}{4}+\dfrac{cos\ 18-cos\ 90}{2\ cos\ 18}\right) \\

\\ \to \sf \dfrac{1}{4}\left(-\dfrac{1}{4}+\dfrac{1}{2}\right) \\

\\ \to \sf \dfrac{1}{4}\left( \dfrac{1}{4}\right) \\

\\ \to \dfrac{1}{16} \\

RHS

Similar questions