Math, asked by sandragajjar, 11 months ago

Cos 60 + sin 45 -Cot 30 upon
tan 60 +sec 45° - Cosec 30​

Answers

Answered by sahildhande987
1

\huge\star{\tt{\underline{\underline{\red{Answer}}}}}\star

Cos 60° = \frac{1}{2}

Sin45° = \frac{1}{\sqrt{2}}

Cot30° = \frac{1}{\sqrt{3}}

Tan60°= \frac{1}{\sqrt{3}}

sec45°= \sqrt{2}

cosec30°= 2

━━━━━━━━━━━━━━━━━▣━━━━━━━━━━━━━━━━━

Now putting these values

\huge{\frac{cos 60 + sin45 - cot 30}{tan60 +sec45 -csc60}} the

\implies \large{\frac{\frac{1}{2} + \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}}{\frac{1}{\sqrt{3}}+\sqrt{2} -2}}

\implies \large{\frac{ \frac{ \sqrt{6} +2\sqrt{3} -2\sqrt{2} }{2\sqrt{6}}}{\frac{1 + \sqrt{6} -2\sqrt{3}}{\sqrt{3}}}}

\implies \large{\frac{\sqrt{6} + 2\sqrt{3} - 2\sqrt{2} x \sqrt{3} }{ 2\sqrt{6} x 1 + \sqrt{6} -2\sqrt{3}}}

\implies \large{\frac{ \sqrt{18} + 2 \sqrt{9} -2\sqrt{6}}{2\sqrt{6} + 2\sqrt{36} -4\sqrt{18}}}

\implies \huge{\boxed{\frac{3\sqrt{2} + 6 -2\sqrt{6}}{2\sqrt{6} +12 - 12\sqrt{2}}}}

━━━━━━━━━━━━━━━━━▣━━━━━━━━━━━━━━━━━

Similar questions