Math, asked by ITZINNOVATIVEGIRL588, 7 months ago

Cos 60° • Cos 42° • Cos 66° • Cos 78° =  \frac{1}{16}

Answers

Answered by Anonymous
8

Step-by-step explanation:

Given :

\bullet\ \; \sf \dfrac{\sqrt{a^2}-\sqrt{x^2}}{\sqrt{a^2}+\sqrt{x^2}}∙

a

2

+

x

2

a

2

x

2

To Find :

Derivative of the given value

Solution :

Let ,

\begin{gathered}\sf y=\dfrac{\sqrt{a^2}-\sqrt{x^2}}{\sqrt{a^2}+\sqrt{x^2}}\\\\\to \sf y=\dfrac{a-x}{a+x}\end{gathered}

y=

a

2

+

x

2

a

2

x

2

→y=

a+x

a−x

Differentiate with respect to x on both sides ,

\to \sf \dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\dfrac{a-x}{a+x}\bigg)→

dx

dy

=

dx

d

(

a+x

a−x

)

d/dx(u/v) = (vu' - uv') / v²

u' ➠ du/dx

v' ➠ dv/dx

\to \sf \dfrac{dy}{dx}=\dfrac{(a+x)\frac{d}{dx}(a-x)-(a-x)\frac{d}{dx}(a+x)}{(a+x)^2}→

dx

dy

=

(a+x)

2

(a+x)

dx

d

(a−x)−(a−x)

dx

d

(a+x)

\to \sf \dfrac{dy}{dx}=\dfrac{(a+x)(-1)-(a-x)(1)}{(a+x)^2}→

dx

dy

=

(a+x)

2

(a+x)(−1)−(a−x)(1)

\to \sf \dfrac{dy}{dx}=\dfrac{-a-x-a+x}{(a+x)^2}→

dx

dy

=

(a+x)

2

−a−x−a+x

\leadsto \sf \pink{\dfrac{dy}{dx}=\dfrac{-2a}{(a+x)^2}}\ \; \bigstar⇝

dx

dy

=

(a+x)

2

−2a

Answered by CoruscatingGarçon
38

Solution:

Hello Mate!!!

I guess your question will be Cos 6° • Cos 42° • Cos 66° • Cos 78° = 1/16, not Cos 60° • Cos 42° • Cos 66° • Cos 78° = 1/16.

To Prove - Cos 6° • Cos 42° • Cos 66° • Cos 78° =  \frac{1}{16}

Proof -

=> Cos 6° • Cos 42° • Cos 66° • Cos 78° =  \frac{1}{16}

=> (Cos 6° • Cos 66°) • (Cos 42° • Cos 78°)=  \frac{1}{16}

Multiplying and dividing by 4,

=>  \frac{1}{4} • (2 • Cos 6° • Cos 66°) • (2 • Cos 42° • Cos 78°) =  \frac{1}{16}

We know that,

cos C + cos D = 2•cos((C+D)/2)•cos((C-D)/2)

So, using inverse relation of it,

=>  \frac{1}{4} • (Cos 60° + Cos 72°) • (Cos 120° + Cos 36°) =  \frac{1}{16}

=>  \frac{1}{4} • ( \frac{1}{2} + Cos 72°) • ( \frac{-1}{2} + Cos 36°) =  \frac{1}{16}

(Cos 72° =  \frac {√5-1}{4} & Cos 36° =  \frac {√5+1}{4} )

=>  \frac{1}{4} • ( \frac{2}{4} +  \frac {√5-1}{4} ) • ( \frac{-2}{4} +  \frac {√5+1}{4} ) =  \frac{1}{16}

=>  \frac{1}{4} • ( \frac{√5+1}{4} ) • ( \frac{√5-1}{4} ) =  \frac{1}{16}

=>  \frac{(√5-1)(√5+1)}{64} =  \frac{1}{16}

=>  \frac{( (√5)^2 - (1)^2 )}{64} =  \frac{1}{16}

=>  \frac{( 5 - 1 )}{64} =  \frac{1}{16}

=>  \frac{(4)}{64} =  \frac{1}{16}

=>  \frac{1}{16} =  \frac{1}{16}

HENCE PROVED.!!!!

HOPE IT HELPS!!!!

PLS MARK IT BRAINLIEST AND FOLLOW ME BCOZ IT TOOK A LOT OF TIME!!!!

Similar questions