Cos 60° • Cos 42° • Cos 66° • Cos 78° =
Answers
Step-by-step explanation:
Given :
\bullet\ \; \sf \dfrac{\sqrt{a^2}-\sqrt{x^2}}{\sqrt{a^2}+\sqrt{x^2}}∙
a
2
+
x
2
a
2
−
x
2
To Find :
Derivative of the given value
Solution :
Let ,
\begin{gathered}\sf y=\dfrac{\sqrt{a^2}-\sqrt{x^2}}{\sqrt{a^2}+\sqrt{x^2}}\\\\\to \sf y=\dfrac{a-x}{a+x}\end{gathered}
y=
a
2
+
x
2
a
2
−
x
2
→y=
a+x
a−x
Differentiate with respect to x on both sides ,
\to \sf \dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(\dfrac{a-x}{a+x}\bigg)→
dx
dy
=
dx
d
(
a+x
a−x
)
d/dx(u/v) = (vu' - uv') / v²
u' ➠ du/dx
v' ➠ dv/dx
\to \sf \dfrac{dy}{dx}=\dfrac{(a+x)\frac{d}{dx}(a-x)-(a-x)\frac{d}{dx}(a+x)}{(a+x)^2}→
dx
dy
=
(a+x)
2
(a+x)
dx
d
(a−x)−(a−x)
dx
d
(a+x)
\to \sf \dfrac{dy}{dx}=\dfrac{(a+x)(-1)-(a-x)(1)}{(a+x)^2}→
dx
dy
=
(a+x)
2
(a+x)(−1)−(a−x)(1)
\to \sf \dfrac{dy}{dx}=\dfrac{-a-x-a+x}{(a+x)^2}→
dx
dy
=
(a+x)
2
−a−x−a+x
\leadsto \sf \pink{\dfrac{dy}{dx}=\dfrac{-2a}{(a+x)^2}}\ \; \bigstar⇝
dx
dy
=
(a+x)
2
−2a
★
Solution:
Hello Mate!!!
I guess your question will be Cos 6° • Cos 42° • Cos 66° • Cos 78° = 1/16, not Cos 60° • Cos 42° • Cos 66° • Cos 78° = 1/16.
To Prove - Cos 6° • Cos 42° • Cos 66° • Cos 78° =
Proof -
=> Cos 6° • Cos 42° • Cos 66° • Cos 78° =
=> (Cos 6° • Cos 66°) • (Cos 42° • Cos 78°)=
Multiplying and dividing by 4,
=> • (2 • Cos 6° • Cos 66°) • (2 • Cos 42° • Cos 78°) =
We know that,
cos C + cos D = 2•cos((C+D)/2)•cos((C-D)/2)
So, using inverse relation of it,
=> • (Cos 60° + Cos 72°) • (Cos 120° + Cos 36°) =
=> • ( + Cos 72°) • ( + Cos 36°) =
(Cos 72° = & Cos 36° = )
=> • ( + ) • ( + ) =
=> • () • () =
=> =
=> =
=> =
=> =
=> =
HENCE PROVED.!!!!
HOPE IT HELPS!!!!
PLS MARK IT BRAINLIEST AND FOLLOW ME BCOZ IT TOOK A LOT OF TIME!!!!