cos^ 67 - sin^ 23 find the value
Answers
Answered by
15
Hey there!
We know that,
cos²B - sin²A = cos(A + B) * cos ( A - B)
Now,
cos²67° - sin²23°
= cos(67 + 23 ) * cos( 67 - 23 )
= cos ( 90 ) * cos45
= 0 * 1/√2 .
= 0
cos²67 -sin²23 = 0 .
Quick Alternative : [ cos²67-sin²23 = cos²(90-23) - sin²23 = sin²23 - sin²23 = 0 ]
[ cos²67-sin²23 = cos²67-sin²(90-67) = cos²67-cos²67 = 0 ]
Hope helped!
We know that,
cos²B - sin²A = cos(A + B) * cos ( A - B)
Now,
cos²67° - sin²23°
= cos(67 + 23 ) * cos( 67 - 23 )
= cos ( 90 ) * cos45
= 0 * 1/√2 .
= 0
cos²67 -sin²23 = 0 .
Quick Alternative : [ cos²67-sin²23 = cos²(90-23) - sin²23 = sin²23 - sin²23 = 0 ]
[ cos²67-sin²23 = cos²67-sin²(90-67) = cos²67-cos²67 = 0 ]
Hope helped!
Answered by
9
Hi.
Here is your answer---
__________________
Given Identity---
Cos²67 - Sin²23
Using the Formula,
Cos²X - Sin²Y = Cos(X + Y) × Cos(X - Y)
= Cos(67 + 23) × Cos(67 - 23)
= Cos 90° × Cos 44° [ Almost 45°]
= Cos 90° × Cos 45°
= 0 × 1/√2
= 0
Thus, Cos²67° - Sin²23° = 0
_________________
Hope it helps.
Have a nice day.
Here is your answer---
__________________
Given Identity---
Cos²67 - Sin²23
Using the Formula,
Cos²X - Sin²Y = Cos(X + Y) × Cos(X - Y)
= Cos(67 + 23) × Cos(67 - 23)
= Cos 90° × Cos 44° [ Almost 45°]
= Cos 90° × Cos 45°
= 0 × 1/√2
= 0
Thus, Cos²67° - Sin²23° = 0
_________________
Hope it helps.
Have a nice day.
Similar questions