Math, asked by rajinirayankula, 6 months ago

cos^ 6A + sin^ 6 A in terms of sin 2 A​

Answers

Answered by vk8091624
63

Answer:

Prove that :sin^6A+cos^6A=1 -3sin^2Acos^2A. ... sin6A+cos6A = (sin2A)3 + ( cos2A)3 = (sin2A + cos2A)3 − 3 sin2A

Answered by Anonymous
98

 \sf \large \mathfrak{ \color{blue}Solution : -  }


 \sf  {cos}^{6} A +  {sin}^{6} A   = ( {cos}^{2} A {)}^{3}  + ( {sin}^{2}A {)}^{3}


 \sf \bigg[ \big( {a}^{3} +  {b}^{3}  = (a + b)( {a}^{2} - ab +  {b}^{2}  \big)   \bigg]


 \sf \implies \bigg( {cos}^{2} A +  {sin}^{2} A \bigg) \bigg( {cos}^{4}A -  {cos}^{2}  A \:  {sin}^{2} A +  {sin}^{4} A  \bigg)


 \sf \implies 1\bigg( {cos}^{4} A -  {cos}^{2} A \:  {sin}^{2} A +  {sin}^{4} A \bigg)



 \sf \implies 1\bigg( {cos}^{4} A  \: {sin}^{4} A -  {cos}^{2} A \:  {sin}^{2} A + 2 {sin}^{2} A  {cos}^{2} A -  {sin}^{2}A \:  {cos}^{2}  A \bigg)


 \sf \implies \bigg( \big( {cos}^{2} A +  {sin}^{2} A { \big)}^{2}  - 3 {sin}^{2} A \:  {cos}^{2} A \bigg)


 \sf \implies \: 1 -  \large{ \frac{3}{4} } \bigg(2 \: sinA \: cosA { \bigg)}^{2}


 \sf  \color{red} \: \implies \: 1 -  \large{ \frac{3}{4} } {sin}^{2} \:  2A
Similar questions