Math, asked by souravsinghdeo, 1 year ago

cos^6A-sin^6A=cos2A(1-1/4sin^2A),PROVE IT

Answers

Answered by MaheswariS
72

cos^6A-sin^6A

=(cos^2A)^3-(sin^2A)^3

\text{Using}

\boxed{\bf\,a^3-b^3=(a-b)(a^2+ab+b^2)}

=(cos^2A-sin^2A)(cos^4A+cos^2A\,sin^2A+sin^4A)

\text{Using}

\boxed{\bf\,cos2A=cos^2A-sin^2A}

=cos2A[(cos^2A)^2+(sin^2A)^2+2sin^2A\,cos^2A-sin^2A\,cos^2A]

=cos2A[(cos^2A+sin^2A)^2-(sin\,A\,cos\,A)^2]

\text{Using}

\boxed{\bf\,cos^2A+sin^2A=1}

=cos2A[1-{\frac{1}{4}}\,(2sinA\,cosA)^2]

\text{Using}

\boxed{\bf\,sin\,2A=2\,sin\,A\,cos\,A}

=cos2A[1-{\frac{1}{4}}\,sin^2\,2A]

\implies\boxed{\bf\,cos^6A-sin^6A=cos2A[1-{\frac{1}{4}}\,sin^2\,2A]}

Answered by rprusty9692
7

Step-by-step explanation:

I hope it is helpful for u(Ãkhîléßh prúßty).

Attachments:
Similar questions