Math, asked by saisumaj, 2 months ago

(cos ⁶theta +sin⁶theta )+3sin²theta cos²theta​

Answers

Answered by mohitchajer
0

Step-by-step explanation:

Answer

L.H.S. =sin⁶θ+cos⁶θ=(sin²θ)³+(cos²θ)³

Assume sin²θ=a and cos²θ=b

∴ L.H.S. =a³ + b³

=(a+b)³ −2ab(a+b) =(sin²θ−cos²θ−3sin²θcos²θ(sin²θ+cos²θ)

=(1)³ −3sin²θcos²θ[∵sin²θ+cos²θ=1]

=1−3sin²θcos²θ

= R.H.S.

hence proved

Answered by sandy1816
1

 ({cos}^{6}  \theta +  {sin}^{6}  \theta) + 3 {sin}^{2}  \theta \:  {cos}^{2}  \theta \\  = ( {cos}^{2}  \theta) ^{3}  + ( { {sin}^{2}  \theta})^{3}  + 3 {sin}^{2}  \theta \:  {cos}^{2}  \theta \\  = ( {cos}^{2}  \theta +  {sin}^{2}  \theta)( {cos}^{4}  \theta +  {sin}^{4}  \theta -  {sin}^{2}  \theta {cos}^{2}  \theta) + 3 {sin}^{2}  \theta {cos}^{2}  \theta \\  =  {cos}^{4}  \theta +  {sin}^{4}  \theta + 2 {sin}^{2}  \theta {cos}^{2}  \theta \\  = ( { {sin}^{2}  \theta +  {cos}^{2}  \theta})^{2}  \\  = 1

Similar questions