Math, asked by eedvranares56, 2 months ago

cos 6x =32 cos ^6X - 48 cos ^ 4 x +18 cos ^2x-1​ (need to prove )​

Answers

Answered by mathdude500
3

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{{\bf \: cos2x = 2 {cos}^{2} x - 1}}

\boxed{{\bf \: cos3x = 4 {cos}^{3} x - 3cosx}}

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:cos6x

 \sf \:  \:  \:  \:  =  \:  \: cos2(3x)

 \sf \:  \:  \:  \:  =  \:  \: 2 {cos}^{2} 3x - 1

 \sf \:  \:  \:  \:  =  \:  \: 2 {(cos3x)}^{2}  - 1

 \sf \:  \:  \:  \:  =  \:  \: 2 {\bigg(  {4cos}^{3}x - 3cosx \bigg) }^{2}  - 1

 \sf \:  \:  \:  \:  =  \:  \: 2\bigg(16 {cos}^{6}x +  {9cos}^{2}x - 24 {cos}^{4} x   \bigg)  - 1

 \sf \:  \:  \:  \:  =  \:  \:  {32cos}^{6}x -  {48cos}^{4}x +  {18cos}^{2}x - 1

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\boxed{{\bf \: sin2x = 2sinxcosx}}

\boxed{{\bf \: cos2x =  {cos}^{2} x -  {sin}^{2} x = 1 -  {2sin}^{2} x =  {2cos}^{2} x - 1}}

\boxed{{\bf \: tan2x = \dfrac{2tanx}{1 -  {tan}^{2} x} }}

\boxed{{\bf \: sin3x  =  3sinx - 4 {sin}^{3}x}}

\boxed{{\bf \: tan3x = \dfrac{3tanx -  {tan}^{3} x}{1 - 3 {tan}^{2}x }}}

\boxed{{\bf \: 1 - cos2x =  {2sin}^{2} x}}

\boxed{{\bf \: 1 + cos2x =  {2cos}^{2} x}}

Similar questions